Betting on climate change at the end of the Earth.
Listen to the
podcast
Stream the sonification
Show notes
Beer-tasting with pro cicerone Malin Derwinger.
Listen to the
podcast
Stream the sonification
Show notes
The US economy is a party and you're invited.
Listen to the
podcast
Stream the sonification
Show notes
Perusing the vast legal archives of the European Union.
Listen to
the podcast
Stream the sonification
Show notes
Download the score
A moment of silence for the insect apocalypse.
Listen to the
podcast
Stream the sonification
Show notes
Loud Numbers is a data sonification podcast, created by Duncan Geere and Miriam Quick. Data sonification is the process of turning data into sound, and we take it a step further by turning those sounds into music. In each episode, we introduce a data story, explain how we sonified it, and then play the sonification we’ve created.
Scroll up and choose an episode you like the sound of, then hit play.
Search for Loud Numbers in your favourite podcast app. If you can't find it, then add the Loud Numbers RSS feed instead.
Miriam Quick is a data journalist, researcher and author who explores novel ways of communicating data. She co-creates artworks that represent data through images, sculpture and sound and has a PhD in music from King’s College London. Her first book, I am a book. I am a portal to the universe., co-authored with Stefanie Posavec, was published in September 2020.
Duncan Geere is an information designer based in Gothenburg, Sweden, interested in climate and the environment. He works to communicate complex, nuanced information to a wider audience for a wide range of clients. He also works part-time for the climate charity Possible, and he's a generative artist and musician.
We’ve tried a lot of sonification tools, and settled on a core technology stack of Google Sheets into Sonic Pi into Logic Pro. We normally do our calculations in Google Sheets, then export the data in .csv format. We then import the .csv to Sonic Pi and code the sonifications there. Finally, we export the sonifications as .wav files, and import them to Logic Pro to turn them into a song. Occasionally, we create simple sonification layers directly in Logic.
Sometimes we bring some other bits and pieces into the mix, but those three tools are the foundation of almost everything we’ve made as part of season one of Loud Numbers. Other good options include twotone.io for non-coders, and tone.js for Javascript fans.
Sonification is a fantastic accessibility tool - especially when it’s combined with visualization. There are lots of fantastic sonification works with a focus on accessibility, like Hear The Blind Spot and the simulations created by PhET at the University of Colorado Boulder.
We created Loud Numbers because we both love music and wanted to experiment with the creative possibilities of sonification. While we’re really excited about the project allowing a wider audience to enjoy data storytelling, we didn’t intentionally design it for accessibility reasons.
Sonification is still an immature field, and there aren’t really “standards” yet. Data to pitch is a very common sonification mapping – the higher the pitch, the larger the quantity – but like many pie charts it’s not always executed very well. There are many other options, such as data to loudness or data to instrument. But like visualization, how you map data to sound depends so much on your data, the story and how your audience will experience it!
Definitely, but sonification is much less common so it’ll probably take longer for those guidelines and standards to emerge. We’re interested in publishing a “Loud Numbers sonification style guide” of some sort at some point. But we need to get the podcast finished first!
Great question. There’s a whole fascinating grey area between music driven by data, music that encodes texts (like musical cryptograms), and music that’s structured according to quasi-mathematical principles. . When you map data to audio or musical parameters, the data does need to be numeric or categorical, but you can of course convert text to numbers and work with it that way. Or you can treat text as a kind of “loose” data - like we’re doing in our Boom & Bust episode, where historical samples are positioned along a musical timeline.
Depends on your goal! If you’re making a sonification to communicate information then it’s important that people understand it. In this situation, you might find it tempting to create a visual legend or accompanying video – but this can sometimes draw focus away from the sound, as people are much more familiar with visualization than sonification.
We’re interested in experimenting with what happens when you can’t rely on visual backup. The introduction to each episode of Loud Numbers explains how the sonification works with some examples, which is kind of like a legend but in audio.
If all you’re interested in is creating something that sounds nice, and it’s not important whether people can pull data out of it or not, then a legend (audio or otherwise) is probably unnecessary.
Quite a lot! But that’s a personal choice, because we’re interested in how musical and data structures interact (or don’t). Miriam has a PhD in music, but Duncan has no formal training. You definitely don’t need a music theory background. Make punk sonifications!
Probably! It’ll be much easier to organise if you can give us a bit of notice.
Yes! Reach out as early as possible so we can fit it into our schedules.
Email us at numbersloud@gmail.com.